Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230102, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705182

RESUMO

Insect monitoring is pivotal for assessing biodiversity and informing conservation strategies. This study delves into the complex realm of insect monitoring in the Global South-world developing and least-developed countries as identified by the United Nations Conference on Trade and Development-highlighting challenges and proposing strategic solutions. An analysis of publications from 1990 to 2024 reveals an imbalance in research contributions between the Global North and South, highlighting disparities in entomological research and the scarcity of taxonomic expertise in the Global South. We discuss the socio-economic factors that exacerbate the issues, including funding disparities, challenges in collaboration, infrastructure deficits, information technology obstacles and the impact of local currency devaluation. In addition, we emphasize the crucial role of environmental factors in shaping insect diversity, particularly in tropical regions facing multiple challenges including climate change, urbanization, pollution and various anthropogenic activities. We also stress the need for entomologists to advocate for ecosystem services provided by insects in addressing environmental issues. To enhance monitoring capacity, we propose strategies such as community engagement, outreach programmes and cultural activities to instill biodiversity appreciation. Further, language inclusivity and social media use are emphasized for effective communication. More collaborations with Global North counterparts, particularly in areas of molecular biology and remote sensing, are suggested for technological advancements. In conclusion, advocating for these strategies-global collaborations, a diverse entomological community and the integration of transverse disciplines-aims to address challenges and foster inclusive, sustainable insect monitoring in the Global South, contributing significantly to biodiversity conservation and overall ecosystem health. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Biodiversidade , Insetos , Insetos/fisiologia , Animais , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Países em Desenvolvimento , Entomologia/métodos , Ecossistema , Mudança Climática
2.
iScience ; 26(8): 107253, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37529107

RESUMO

Larvae of caddisflies (Trichoptera) produce silk to build various underwater structures allowing them to exploit a wide range of aquatic environments. The silk adheres to various substrates underwater and has high tensile strength, extensibility, and toughness and is of interest as a model for biomimetic adhesives. As a step toward understanding how the properties of underwater silk evolved in Trichoptera, we used genomic data to identify full-length sequences and characterize the primary structure of the major silk protein, h-fibroin, across the order. The h-fibroins have conserved termini and basic motif structure with high variation in repeating modules and variation in the percentage of amino acids, mainly proline. This finding might be linked to differences in mechanical properties related to the different silk usage and sets a starting point for future studies to screen and correlate amino acid motifs and other sequence features with quantifiable silk properties.

3.
Chemosphere ; 340: 139791, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37574088

RESUMO

Environmental pollution by mercury (Hg) is of particular interest in Latin American countries like Ecuador, where artisanal and industrial gold mining has widely expanded. However, classic assessments, either based on water parameters or bioindicators, are not always effective in determining the effect of this type of pollutant on the ecological quality of the rivers. This study analyzed the behavioral and biochemical responses in benthic macroinvertebrate Nectopsyche sp. after sub-lethal Hg exposure emulating the maximum limits allowed by the current legislation in Ecuador (0.0002 mg L-1). Behavioral changes were significant, with an average decrease in the movement (measured as the number of strokes per 15 s of larvae) after 6 days of exposure to the maximum limit concentration of Hg. Furthermore, the antioxidant enzyme Glutathione S-Transferase activity significantly increased when exposed for 7 days to 0.0002 mg L-1 of Hg concentration. These results preliminarily proved that behavioral and biochemical patterns could function as biomarkers that efficiently identify ecological impairment caused by Hg, which would otherwise be neglected by a purely chemical-based or biomonitoring based on the presence/absence of macroinvertebrates type of assessment. Moreover, we demonstrate that the current limits allowed can impair aquatic life.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Mercúrio/toxicidade , Mercúrio/análise , Poluição Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Larva , Mineração , Rios , Ouro , Monitoramento Ambiental/métodos
4.
Proc Natl Acad Sci U S A ; 120(18): e2221528120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094147

RESUMO

Arthropod silk is vital to the evolutionary success of hundreds of thousands of species. The primary proteins in silks are often encoded by long, repetitive gene sequences. Until recently, sequencing and assembling these complex gene sequences has proven intractable given their repetitive structure. Here, using high-quality long-read sequencing, we show that there is extensive variation-both in terms of length and repeat motif order-between alleles of silk genes within individual arthropods. Further, this variation exists across two deep, independent origins of silk which diverged more than 500 Mya: the insect clade containing caddisflies and butterflies and spiders. This remarkable convergence in previously overlooked patterns of allelic variation across multiple origins of silk suggests common mechanisms for the generation and maintenance of structural protein-coding genes. Future genomic efforts to connect genotypes to phenotypes should account for such allelic variation.


Assuntos
Borboletas , Fibroínas , Aranhas , Animais , Seda/química , Sequência de Aminoácidos , Fibroínas/química , Alelos , Insetos/genética , Borboletas/genética , Variação Genética , Aranhas/genética , Proteínas de Insetos/genética , Filogenia
5.
Toxics ; 10(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36548553

RESUMO

Andean streams are becoming increasingly impacted by agricultural activities. However, the potential effects of pesticides on their aquatic biodiversity remain unassessed. In order to address this knowledge gap, we conducted an experiment over 37 days in microcosms to assess the effect of two pesticides commonly used in Ecuador (Engeo and Chlorpyrifos) on the aquatic insect Nectopsyche sp. (Trichoptera: Leptoceridae) at 0, 0.10, 5 and 10 µg L-1 concentrations. The highest concentration corresponds to the maximum concentration allowed by the Equatorian legislation. We assessed insect mortality every 24 h, with leaf litter decomposition rates of organic matter determined by deploying Andean alder (Alnus acuminata) dry leaf packs in the microcosms. We found significant mortality of Nectopsyche sp. at high concentrations of Chlorpyrifos, whereas leaf litter was not significantly affected by any of the treatments. We conclude that the environmental legislation of Ecuador might not be fully protecting aquatic biodiversity from pesticide pollution. Further studies are needed, especially when considering that the maximum permitted concentration is very likely exceeded in many areas of the country. We also suggest that the maximum permissible values should be reviewed, considering each pesticide individually.

6.
PLoS One ; 17(8): e0272229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35930543

RESUMO

Aquatic insects in the order Trichoptera are extremely diverse in number of species and their trophic roles. However, their distribution and diversity patterns are poorly known in the Neotropics, including the species restricted to tropical mountain ecosystems. Recent studies in tropical mountains have shown high levels of endemism of aquatic insects and changes in the composition of communities over short distances. Still, the incidence of environmental filters that explain such patterns has not been addressed quantitatively. Given the relevance of understanding Trichoptera spatial diversity patterns to prioritize conservation areas for freshwaters, as well as to obtain baseline information to predict changes in aquatic communities facing global environmental changes, we assessed the species distribution and assemblages of caddisflies along an elevational gradient from 600 to 3,600 m a.s.l. on the equatorial Andes. In this area, we had long-term continuous climate data with hourly resolution. We collected adult caddisflies in seven localities along this gradient using light traps. We sampled each locality for two hours after sunset for three consecutive days. All specimens collected were identified to species or morphospecies. Our results showed an increase in species and genera numbers with decreasing altitude, albeit no significant. Minimum air temperature is the main environmental variable explaining Trichoptera community assemblages. ß-diversity (taxon turnover among sites), as opposed to species richness, increased with altitude and showed a bimodal distribution along the elevation gradient for both genera and species assemblages, which resulted in a significant shift in community composition of species and genera at 2,000 m a.s.l. Our null-models confirm the observed patterns of B-diversity are non-random and suggest a strong environmental filtering of tropical caddisflies community assemblies and turnover. Geographic distance coupled with changes in environmental conditions along the elevation gradient explained a high percentage of community variance, as documented for other taxa (e.g., vascular plants), suggesting the importance of securing habitat connectivity along the altitudinal gradient to protect aquatic insect diversity effectively.


Assuntos
Ecossistema , Holometábolos , Altitude , Animais , Biodiversidade , Água Doce , Insetos
7.
PLoS One ; 17(7): e0271256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895667

RESUMO

Temperatures have increased around the globe, affecting many ecosystems, including high-elevation Andean streams where important aquatic insect species coexist. Depending on the magnitude of change, warming could lead to the mortality of sensitive species, and those tolerant to rising water temperatures may exhibit differences in growth rates and development. Taxon-specific optimal temperature ranges for growth determine how high or low temperatures alter an organism's body size. In this study, we observed the effects of different climate change scenarios (following three scenarios of the 2021 IPCC predictions) in two aquatic insect species distributed in high-elevation streams in Ecuador: the mayfly Andesiops peruvianus (Ephemeroptera: Baetidae) and the caddisfly Anomalocosmoecus illiesi (Trichoptera: Limnephilidae). We assessed how increased water temperatures affect larval growth rates and mortality during a 10-day microcosm experiment. Our results showed that Andesiops peruvianus was more thermally sensitive than Anomalocosmoecus illiesi. Mortality was higher (more than 50% of the individuals) in mayflies than in caddisflies, which presented mortality below 12% at +2.5°C and +5°C. Mortality in mayflies was related to lower dissolved oxygen levels in increased temperature chambers. Higher temperatures affected body size and dry mass with a faster growth rate of Andesiops peruvianus larvae at experimentally higher temperatures, suggesting an important response of this hemimetabolous species to stream temperatures. For Anomalocosmoecus illiesi, we did not find significant changes in mortality, body size or growth rate in response to temperature changes during our experiment. In situ outcomes of species survival and growth in Andean streams are difficult to predict. Nevertheless, our results suggest that at only +2.5°C, a water temperature increase affected the two insect taxa differentially, leading to a drastic outcome for one species' larvae while selecting for a more tolerant species. Our study suggests that climate change might produce significant mortality and growth rate effects on ectotherm tropical aquatic insects, especially Andean mayflies, which showed higher sensitivity to increased water temperature scenarios.


Assuntos
Ephemeroptera , Holometábolos , Animais , Ecossistema , Humanos , Insetos/fisiologia , Larva , Rios , Temperatura , Água
8.
Insects ; 13(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35447824

RESUMO

Chironomids show a wide distribution and can occupy several habitats due to their high adaptive capacity in different freshwater environments. The genus Polypedilum is found along a wide elevational and environmental gradient in the neotropics, and its genetic variability could help to elucidate factors determining its distribution and tolerance to the environmental changes of different species or populations. This study examines the genetic variability of Polypedilum in an important biogeographic area that acts as a geographical barrier of biodiversity at the border of the Choco and Tumbes biomes. We identified five Polypedilum morphotypes using classic taxonomic methods. We examined 68 Polypedilum individuals from eight sampling sites in El Oro Province, Ecuador, analyzing the putative molecular species using the cytochrome c oxidase subunit 1 (CO1) mitochondrial gene fragment. Then, we calculated molecular diversity indices, Haplotype diversity (Hd), and θs and θπ estimators. Seven Polypedilum OTUs were determined from which a high molecular diversity was registered. A CCA was conducted to understand the population composition in relation to environmental characteristics. Results indicated that dissolved oxygen and temperature are the main environmental factors affecting Polypedilum distribution across elevational gradients and between basins.

9.
Genome Biol Evol ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34962985

RESUMO

We sequence, assemble, and annotate the genome of Atopsyche davidsoni Sykora, 1991, the first whole-genome assembly for the caddisfly family Hydrobiosidae. This free-living and predatory caddisfly inhabits streams in the high-elevation Andes and is separated by more than 200 Myr of evolutionary history from the most closely related caddisfly species with genome assemblies available. We demonstrate the promise of PacBio HiFi reads by assembling the most contiguous caddisfly genome assembly to date with a contig N50 of 14 Mb, which is more than 6× more contiguous than the current most contiguous assembly for a caddisfly (Hydropsyche tenuis). We recover 98.8% of insect BUSCO genes indicating a high level of gene completeness. We also provide a genome annotation of 12,232 annotated proteins. This new genome assembly provides an important new resource for studying genomic adaptation of aquatic insects to harsh, high-altitude environments.


Assuntos
Holometábolos , Insetos , Animais , Genoma , Genômica , Anotação de Sequência Molecular , Análise de Sequência de DNA
10.
Zookeys ; 1111: 381-388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760850

RESUMO

Life history of benthic faunas of tropical high-altitude cold environments are poorly studied. Here, monthly larval and adult data are presented for Anomalocosmoecusilliesi at Saltana Stream in Ecuador. In cold conditions throughout the year (6 °C), this species showed an asynchronous and continuous production. Larval density showed two peaks in August and April. All five larval instars were present in most months. Using the size-frequency method an annual rate of secondary production per biomass of 4.8 was calculated. The measured biomass was 785 mg/m2.

11.
Zookeys ; 1117: 95-122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761375

RESUMO

A new genus and species of Philopotamidae (Trichoptera), Sumacodellaelongata, is described from the southern slope of Volcán Sumaco in Ecuador. This new genus differs from other philopotamid genera by having very elongate, narrow anterolateral apodemes on segment IX and the inferior appendages, a very elongate and narrow tergum X, and a very elongate, tubular phallus. In addition, two new species of Wormaldia are also described and illustrated from Sumaco as well as three new Chimarra (Chimarra), one new Chimarra (Curgia), and one new Chimarra (Otarrha) from the eastern and western slopes of the Ecuadorian Andes.

12.
Front Public Health ; 10: 1029375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620267

RESUMO

Background: Despite worldwide progress in terms of clean water supply, sanitation, and hygiene knowledge, some middle and most of low-income countries are still experiencing many diseases transmitted using unsafe water and the lack of sanitation. Methods: To understand the impact of all waterborne diseases (WBD) registered in Ecuador. We performed a population-based analysis of all cases and deaths due to WBD in Ecuador based on the national public databases of hospital discharges as a proxy of incidence, in-hospital mortality, and countrywide general mortality rates from 2011 to 2020. Results: In Ecuador, mestizos (mixed European and Indigenous American ancestry) had the greatest morbidity rate (141/100,000), followed by indigenous (63/100,000) and self-determined white patients (21/100,000). However, in terms of mortality, indigenous population have the greatest risk and rates, having a 790% additional mortality rate (2.6/100,000) than the reference group (self-determined white populations) at 0.29/100,000. The burden of disease analysis demonstrated that indigenous had the highest burden of disease caused by WBD with 964 YLL per every 100,000 people while mestizos have 360 YYL per 100,000 and self-determined white Ecuadorians have 109 YYL per 100,000. Conclusions: In Ecuador, waterborne diseases (WBD) are still a major public health problem. We found that indigenous population had higher probability of getting sick and die due to WBD than the rest of the ethnic groups in Ecuador. We also found that younger children and the elderly are more likely to be admitted to the hospital due to a WBD. These epidemiological trends are probably associated with the lower life expectancy found among Indigenous than among the rest of the ethnic groups, who die at least, 39 years earlier than the self-determined white populations, 28 years earlier than Afro-Ecuadorians and 12 years earlier than the mestizos.


Assuntos
Doenças Transmitidas pela Água , Criança , Humanos , Idoso , Equador/epidemiologia , Doenças Transmitidas pela Água/epidemiologia , Etnicidade , Saúde Pública , Efeitos Psicossociais da Doença
13.
Water (Basel) ; 13(3): 371, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33868721

RESUMO

The biological assessment of rivers i.e., their assessment through use of aquatic assemblages, integrates the effects of multiple-stressors on these systems over time and is essential to evaluate ecosystem condition and establish recovery measures. It has been undertaken in many countries since the 1990s, but not globally. And where national or multi-national monitoring networks have gathered large amounts of data, the poor water body classifications have not necessarily resulted in the rehabilitation of rivers. Thus, here we aimed to identify major gaps in the biological assessment and rehabilitation of rivers worldwide by focusing on the best examples in Asia, Europe, Oceania, and North, Central, and South America. Our study showed that it is not possible so far to draw a world map of the ecological quality of rivers. Biological assessment of rivers and streams is only implemented officially nation-wide and regularly in the European Union, Japan, Republic of Korea, South Africa, and the USA. In Australia, Canada, China, New Zealand, and Singapore it has been implemented officially at the state/province level (in some cases using common protocols) or in major catchments or even only once at the national level to define reference conditions (Australia). In other cases, biological monitoring is driven by a specific problem, impact assessments, water licenses, or the need to rehabilitate a river or a river section (as in Brazil, South Korea, China, Canada, Japan, Australia). In some countries monitoring programs have only been explored by research teams mostly at the catchment or local level (e.g., Brazil, Mexico, Chile, China, India, Malaysia, Thailand, Vietnam) or implemented by citizen science groups (e.g., Southern Africa, Gambia, East Africa, Australia, Brazil, Canada). The existing large-extent assessments show a striking loss of biodiversity in the last 2-3 decades in Japanese and New Zealand rivers (e.g., 42% and 70% of fish species threatened or endangered, respectively). A poor condition (below Good condition) exists in 25% of South Korean rivers, half of the European water bodies, and 44% of USA rivers, while in Australia 30% of the reaches sampled were significantly impaired in 2006. Regarding river rehabilitation, the greatest implementation has occurred in North America, Australia, Northern Europe, Japan, Singapore, and the Republic of Korea. Most rehabilitation measures have been related to improving water quality and river connectivity for fish or the improvement of riparian vegetation. The limited extent of most rehabilitation measures (i.e., not considering the entire catchment) often constrains the improvement of biological condition. Yet, many rehabilitation projects also lack pre-and/or post-monitoring of ecological condition, which prevents assessing the success and shortcomings of the recovery measures. Economic constraints are the most cited limitation for implementing monitoring programs and rehabilitation actions, followed by technical limitations, limited knowledge of the fauna and flora and their life-history traits (especially in Africa, South America and Mexico), and poor awareness by decision-makers. On the other hand, citizen involvement is recognized as key to the success and sustainability of rehabilitation projects. Thus, establishing rehabilitation needs, defining clear goals, tracking progress towards achieving them, and involving local populations and stakeholders are key recommendations for rehabilitation projects (Table 1). Large-extent and long-term monitoring programs are also essential to provide a realistic overview of the condition of rivers worldwide. Soon, the use of DNA biological samples and eDNA to investigate aquatic diversity could contribute to reducing costs and thus increase monitoring efforts and a more complete assessment of biodiversity. Finally, we propose developing transcontinental teams to elaborate and improve technical guidelines for implementing biological monitoring programs and river rehabilitation and establishing common financial and technical frameworks for managing international catchments. We also recommend providing such expert teams through the United Nations Environment Program to aid the extension of biomonitoring, bioassessment, and river rehabilitation knowledge globally.

14.
Rev. biol. trop ; 69(1)2021.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1507805

RESUMO

Introduction: Chironomids (Diptera: Chironomidae) are the most globally diverse and widely distributed aquatic insects. Despite their prevalence in lotic systems, little is known about the ecology and diversity of tropical species relative to other aquatic insect taxa, particularly at the immature stages. Objective: Characterize chironomid diversity across an elevational gradient in Southwestern Ecuador and water quality parameters associated with their composition. Methods: Samples were collected using a Surber net in forty rivers within four watersheds in the Ecuadorian Andes comprised of montane and dry lowland forest and spanning an elevational gradient of 3 120 m.a.s.l. Various physic chemical variables were measured including oxygen, conductivity, total dissolved solids, temperature, and pH. Results: Generally, environmental variables were strongly correlated with the composition of chironomid communities. Variation in the chriomid communities was most strongly associated with oxygen, conductivity and pH. The presence of Parametriocnemus, Cricotopus f4, Cricotopus sp3., Cricotopus (Isocladius), Oliveiriella, Onconeura, Alotanypus and Pentaneura was associated with lower temperatures, high dissolved oxygen and low conductivity while assemblages of Cricotopus sp., Rheotanytarsus, Tanytarsus, and Chironomus were associated with high conductivity and low concentrations of dissolved oxygen. The RELATE analysis showed that local environmental characteristics are determine the composition of the chironomid community. Conclusions: Similarity among local environmental factors was strongly correlated to similarity among Chironomidae assemblages, especially with variables such as oxygen concentration, pH and conductivity, whose variables are highly correlated to land use and dominant vegetation in the watersheds sampled.


Introducción: Los quironómidos (Diptera: Chironomidae) son los insectos acuáticos de mayor diversidad y distribución mundial. A pesar de su prevalencia en los sistemas lóticos, se sabe poco acerca de su ecología y diversidad, especialmente de especies tropicales en relación con otros taxones de insectos acuáticos, particularmente en etapas inmaduras. Objetivo: Caracterizar la diversidad de quironómidos a través de un gradiente altitudinal en el suroeste de Ecuador, además de identificar los parámetros fisicoquímicos asociados con su composición. Métodos: Las muestras se recolectaron utilizando una red Surber en cuarenta ríos dentro de cuatro cuencas hidrográficas en los Andes Sur del Ecuador, en ecosistemas de bosques montanos y secos de tierras bajas abarcando un gradiente altitudinal de 3 120 m.s.n.m. Se midieron las variables fisicoquímicas: oxígeno, conductividad, sólidos disueltos totales, temperatura y pH. Resultados: En general, las variables ambientales se correlacionaron fuertemente con la composición de las comunidades de quironómidos. La variación en la comunidad de quironómidos se asoció fuertemente con el oxígeno, la conductividad y el pH. La presencia de los géneros Parametriocnemus, Cricotopus f4, Cricotopus sp3, Cricotopus (Isocladius), Oliveiriella, Onconeura, Alotanypus y Pentaneura se asoció a temperaturas bajas, alto oxígeno disuelto y baja conductividad, mientras que Cricotopus sp., Rheotanytarsus, Tanytarsus y Chironomus se asociaron con alta conductividad y bajas concentraciones de oxígeno disuelto. El análisis RELATE mostró que las características ambientales locales determinan la composición de la comunidad de quironómidos. Conclusiones: La similitud entre los factores ambientales locales se correlacionó fuertemente con la similitud entre los conjuntos de Chironomidae, especialmente con variables como la concentración de oxígeno, el pH y la conductividad, cuyas variables están altamente correlacionadas con el uso de la tierra y la vegetación dominante en las cuencas hidrográficas muestreadas.


Assuntos
Animais , Fauna Aquática , Chironomidae/anatomia & histologia , Dípteros , Equador
15.
Sci Total Environ ; 743: 140832, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679506

RESUMO

Since the beginning of COVID-19 pandemic studies on viral shedding have reported that this virus is excreted in feces in most patients. High viral loads are found at the sewage pipeline or at the entrance of wastewater treatment plants from cities where the number of COVID-19 cases are significant. In Quito (Ecuador) as in many other cities worldwide, wastewater is directly discharged into natural waters. The aim of this study was to evaluate SARS-CoV-2 presence in urban streams from a low sanitation context. Three river locations along the urban rivers of Quito were sampled on the 5th of June during a peak of COVID-19 cases. River samples were evaluated for water quality parameters and afterwards, concentrated for viral analysis using skimmed milk flocculation method. The viral concentrates were quantified for SARS-CoV-2 (N1 and N2 target regions) and Human Adenovirus as a human viral indicator. The results showed that SARS-CoV-2 was detected for both target regions in all samples analyzed in a range of 2,91E+05 to 3,19E+06 GC/L for N1 and from 2,07E+05 to 2,22E+06 GC/L for N2. The high values detected in natural waters from a low sanitation region have several implications in health and ecology that should be further assessed.


Assuntos
Infecções por Coronavirus , Pandemias , Pneumonia Viral , Rios , Saneamento , Betacoronavirus , COVID-19 , Cidades , Equador , Humanos , SARS-CoV-2
16.
Heliyon ; 6(7): e04302, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32685712

RESUMO

In recent years, the problem of microplastic pollution has begun to receive more attention. Currently, it is known that these particles, less than 5 mm in diameter, can lead to problems for both ecosystems and human health due to the toxicity of their components. In spite of this, research on this topic has focused mainly on the oceans, leaving aside rivers, which are the main source of these pollutants to oceans. Additionally, information is limited to certain rivers in countries of the northern hemisphere where wastewater treatment plants can retain up to 80% of microplastics. In South America, microplastic pollution is practically unknown, and wastewater treatment in several areas is still limited. This study focused on quantifying the microplastics present in the upper basin of the Guayllabamba River, in the Tropical Andes, a biodiversity hotspot. This basin is where the capital city of Ecuador, Quito, is located. Less than 10% of the wastewater in Quito is treated and the rest is dumped to rivers without treatment. We performed a physical analysis of microplastics, by weight and by category of microplastic, in various sampling points before and after urban areas. We found microplastic pollution beginning in the headwaters of the basin, with significant increases in urban areas of the Metropolitan District of Quito. Values of suspended microplastics in rivers after urban areas were higher than those recorded in the literature. Plastic levels in sediment were also higher after urban areas. Microplastics were highly correlated with other water pollutants, showing the prevailing necessity of wastewater treatment plants, because all of this pollution is dumped into rivers that flow from 2800 m a.s.l. to highly diverse freshwater ecosystems and human populations located downstream that depend on these aquatic sources, and finally to the Pacific Ocean.

17.
Science ; 365(6458): 1124-1129, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31515386

RESUMO

Tropical montane rivers (TMR) are born in tropical mountains, descend through montane forests, and feed major rivers, floodplains, and oceans. They are characterized by rapid temperature clines and varied flow disturbance regimes, both of which promote habitat heterogeneity, high biological diversity and endemism, and distinct organisms' life-history adaptations. Production, transport, and processing of sediments, nutrients, and carbon are key ecosystem processes connecting high-elevation streams with lowland floodplains, in turn influencing soil fertility and biotic productivity downstream. TMR provide key ecosystem services to hundreds of millions of people in tropical nations. In light of existing human-induced disturbances, including climate change, TMR can be used as natural model systems to examine the effects of rapid changes in abiotic drivers and their influence on biodiversity and ecosystem function.


Assuntos
Altitude , Ecossistema , Rios , Clima Tropical , Biodiversidade , Humanos
18.
Zookeys ; (793): 97-114, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405312

RESUMO

Four new species of Atanatolica Mosely are described from Ecuador: A.andina sp. n., A.angulata sp. n., A.curvata sp. n., and A.decouxi sp. n. These species belong to the A.dominicana group and constitute new records of the genus from Chimborazo, Imbabura, and Napo Provinces. Additionally, A.andina sp. n. represents the highest elevation recorded for any species in the genus at 3900 m. Size class data are also presented suggesting continuous larval growth for the probable larva of A.decouxi sp. n., described and illustrated here. A new distribution record is provided for A.manabi from Carchi Province.

19.
Sci Total Environ ; 645: 1334-1343, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30248857

RESUMO

In Quito, the microbiological contamination of surface water represents a public health problem, mainly due to the lack of sewage treatment from urban wastewater. Contaminated water contributes to the transmission of many enteric pathogens through direct consumption, agricultural and recreational use. Among the different pathogens present in urban discharges, viruses play an important role on disease, being causes of gastroenteritis, hepatitis, meningitis, respiratory infections, among others. This study analyzes the presence of viruses in highly impacted surface waters of urban rivers using next-generation sequencing techniques. Three representative locations of urban rivers, receiving the main discharges from Quito sewerage system, were selected. Water samples of 500 mL were concentrated by skimmed-milk flocculation method and the viral nucleic acid was extracted and processed for high throughput sequencing using Illumina MiSeq. The results yielded very relevant data of circulating viruses in the capital of Ecuador. A total of 29 viral families were obtained, of which 26 species were associated with infections in humans. Among the 26 species identified, several were related to gastroenteritis: Human Mastadenovirus F, Bufavirus, Sapporovirus, Norwalk virus and Mamastrovirus 1. Also detected were: Gammapapillomavirus associated with skin infections, Polyomavirus 1 related to cases of kidney damage, Parechovirus A described as cause of neonatal sepsis with neurological affectations and Hepatovirus A, the etiologic agent of Hepatitis A. Other emergent viruses identified, of which its pathogenicity remains to be fully clarified, were: Bocavirus, Circovirus, Aichi Virus and Cosavirus. The wide diversity of species detected through metagenomics gives us key information about the public health risks present in the urban rivers of Quito. In addition, this study describes for the first time the presence of important infectious agents not previously reported in Ecuador and with very little reports in Latin America.


Assuntos
Monitoramento Ambiental , Rios/virologia , Poluição da Água/análise , Cidades , Equador , Humanos , Metagenômica , Poluição da Água/estatística & dados numéricos
20.
Zookeys ; (780): 89-108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127659

RESUMO

A new genus and species of Philopotamidae (Philopotaminae), Aymaradellaboliviana, is described from the Bolivian Andes of South America. The new genus differs from other Philopotaminae by the loss of 2A vein in the hind wing and, in the male genitalia, the synscleritous tergum and sternum of segment VIII, and the elongate sclerotized dorsal processes of segment VIII. The first record of Hydrobiosella (Philopotaminae) in the New World is also provided with a new species from the Andes of Ecuador, Hydrobiosellaandina. In addition, a new species of the Neotropical genus Chimarrhodella (Chimarrinae), Chimarrhodellachoco, is described from the Choco-Andean region of Ecuador, and Chimarrhodellaperuviana (Ross) is recorded from Ecuador for the first time. Lastly, Wormaldiaimbrialis (Philopotaminae), new species, is described, also from the Ecuadorian Choco.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...